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Intfroduction

- Space Launch System (SLS)

- NASA-developed, human-rated launch vehicle for
large-scale (exploration-class) crew and cargo access
LEO: 95 1 [~209 klbm] (Block 1) / 130 t [~290 lbm] (Block II)
TLI: 26 1 [~57 klom] (Block ) / 37 t [~80 klbm] (Block Il)
First uncrewed test flight: Artemis | (lunar)

- First crewed test flight: Artemis Il (lunar)
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MSFC Liftoff and Separation Analysis Group va:»

* Working group at NASA MSFC tasked with
SLS liftoff and separation analysis

* Main analysis tool is CLVTOPS, a hi-fidelity
multi-body dynamics simulator, various
analysis scripts, minimum distance
algorithms, animation tools

* Main analysis product includes a cyclical
report on separation event clearances
- Launch tower separation, booster
separation, payload separation
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SLS Post FlightClearance Analysis

* Task is to assess separation clearances at liftoff, booster-sep, and payload-sep to
support verification & validation of SLS program analysis procedures and tools
* Photogrammetry and rigid body kinematics used for trajectory estimation*
— Cameras capture images of a reference marked body
— Photogrammetry process calculates reference marker trajectories
— Vehicle states may be estimated by mapping the known marker points to their trajectories

*In addition to Day-of-Launch simulations
www.nasa.gov/sls a
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Task Separation

* Imagery Group - Liftoff and Separation Group

Photogrammetry Reconstruction Clearance Analysis
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Photogrammeiry Summary

- Cameras are used to capture

: Yellow lines below are the
separation event

. tfracked 3-DOF positions of the
- High contrast photo-targets are
tracked in 2D checkerboard corners as the

- Markings are placed such that booster falls away
a minimum quantity subset is
always visible

- 2D image coordinates are

transformed to 3D world space

- Single Camera Setup
- Use of collinearity equations and
distance constraints
- Solved by non-linear least squares
- Multiple Camera Setup
- Solved using friangulation
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Reconstruction Setup

- Vehicle states can be estimated if the
location of a sufficient number of
points on the body are known

Tc@ to

®

- Simplified diagram reveals main
components necessary for state
estimation

rc =rg+Arc =Crg +h

5
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Rigid Body State Equations

The location of a point on the booster represented in the core frame is as follows
roc =rg +Arc = Crg + h

Where r¢c and I g are the vector to the point in the core and booster frame, h is
the vector to the booster origin in core frame, C is the transformation from
booster to core. r g is statically known, r¢ is generated by the photogrammetry.

A general system can be constructed per the following
| rc1 re2 ... ren |=C|lrp T2 ... Trp, | +h,
Po=CPgp+h

/
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Algorithm Selection

- A 1997 paper by Eggert et al.*, conducts a survey of four major

rigid body transformation algorithms
- SVD, orthonormal matrices, unit quaternions, dual quaternions
- All manipulate eigensystem of a derived matrix
- All solve for an optimal rotation before calculating translation
- All minimize a similar cost function

¥2 =311 |di —Rm; —T|?

- Result of survey is that there is no superior algorithm, differences
come out in edge cases and high compute environments

- If all are similarly effective, choose the simplest to implement
- The SVD algorithm, which also happens to be marginally more
OccurOTe ThOn The OTherS * Eggert, D. W., Lorusso, A., & Fisher, R. B. (1997). Estimating 3-D

/
&S Ls rigid BODY transformations: A comparison of four major algorithms.
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Reconstruction Algorithm

- Initial and final coordinates have the same centroid
- Relocate centroids to origin to isolate the rotation (i.e. subtract the

means), P4, = Pg — Pg. P: =Po — Pg

- A is a correlation matrix defined by the product of the relocated
initial and final coordinates
-A =PLPy

* Let U,S,V = svd(A)
- The optimal rotation, C = VU7
- If the determinant of C is-1, C = V*U7T , where V* = [vy, vy, — V3]

- Once the rotation is found, h = P — CPj3

/
\SLS Methodology from ref 1 — Eggert, et. al
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N-Body State“Estimation

- The preceding was an explanation of the simplified procedure,
where the camera and tracked body frames are directly

connected (booster sep, ICPS sep)
- All that needs to be known is the inifial location in both frames and
the displacement in the observing

ri=r1+Ari =Cry+h

- Reconstruction of the SLS liftoff case is more complex because
we have a camera (on the ground) tracking points on bodies
that are more than one frame separated from the camera

frame (ground->core->SRBs->SRB nozzles)
- Now must account for frames moving within frames
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N-Body Accounting

. . . * Need to turn the N
- L".'L'L'L'L‘&i‘s’f%ie?ems body problem into a
IL o series of 2 body
problems
J - Each frame observes
the point with a
. different displacement
~, * Find the next frame’s
Tl e displacement, and you
Apo — OT Ar) — (ho + AR — (11 — B have the 2 body
72 5 [(r1 +Ary) — (ha + Ahg)] — (1 2) problem
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Algorithm V erification

- Using raw simulation output marker trajectories, we test the
algorithm to see if it can perform a perfect reconstruction
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ICPS Separation
Time (s): 4.57
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ICPS Separation — Reconsiruction

- Accuracy Requirements ¢, QuatemionError  Displacement Error _
- Predict 6-DOF fo within 2" el /
when avionics shelf at exit
plane ~4.2s after sep o 1 2
- Challenges o _ "2 [ROMT me ’
- Special case of planar - 5
coordinates = | g | /j _
- Depth measurement skew N j\/{
can lead to increased jitter
- High measurement errors 10°}
due fo camera survey
mismatch N L i
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Reconstruction Error Reconstructed vs. Truth Point Error
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ICPS Separation - Trajectory Smoothing NASA

- Kinematics occur continuously, unordered jitter is not desired
- Smoothing can help reduce variance in reconstruction errors and
add to clearance fidelity
- It can also infroduce more error if done incorrectly

- Method
- Generate mean of entire point trajectory using noisy 6DOF (P;)
- Apply smoothing filter to quaternion and and mean trajectory
- Generate a smooth frame displacement using previous equation

Pl}ﬁl<H17F3 som 1~ H o
Py 7 Q Q-
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- Without access to truth

data, smoothing can
be somewhat arbitrary

Bias filtering to curves
with instability

Infer frends from the
curve/know what
you're modeling

Avoid blanketing the
whole curve in one filter
due to varying trends

SMOOTH
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Time (sec): 135.1
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- Accuracy Requirements
- Predict forward attach
clearance to within 0.25"
0.8s after sep
- Predict aft attach *SLS-Y/Z
plane clearance to within
0.75" 0.8s after sep

- Challenges
- Single camera photo-
grammetry not suited for
depth perception
- Tracked markers change
frequently, causing jitter
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Liftoff — Reconsiruction Monie Carlo

- Accuracy Requirements . +10° Quatemion Error Displacement Error

15

- Predict 6-DOF to within 6"
through tower clear

- Challenges 1| 1§

- One of the simpler cases
due to affitude hold
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Closing Remarks

- In addition to day of launch simulations, photogrammetry
appears to be a viable analysis tool for determining clearance

- Photogrammetry will likely be used to verity simulations are in the
ballpark of observed trends

- Camera footage quality is subject to environmental uncertainty
- Liffoff acoustics environment is not conducive to steady recording
- Engine plumes or surrounding particulate could obscure cameras
- No ambient lighting in payload deployment stage
- Night launches make footage effectively unusable
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